Representations and Characterizations of Polynomial Functions on Chains

نویسندگان

  • Miguel Couceiro
  • Jean-Luc Marichal
چکیده

We are interested in representations and characterizations of lattice polynomial functions f : L → L, where L is a given bounded distributive lattice. In a companion paper [4], we investigated certain representations and provided various characterizations of these functions both as solutions of certain functional equations and in terms of necessary and sufficient conditions. In the present paper, we investigate these representations and characterizations in the special case when L is a chain, i.e., a totally ordered lattice. More precisely, we discuss representations of lattice polynomial functions given in terms of standard simplices and we present new axiomatizations of these functions by relaxing some of the conditions given in [4] and by considering further conditions, namely comonotonic minitivity and maxitivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Functions on Bounded Chains

We are interested in representations and characterizations of lattice polynomial functions f : L → L, where L is a given bounded distributive lattice. In an earlier paper [4, 5], we investigated certain representations and provided various characterizations of these functions both as solutions of certain functional equations and in terms of necessary and sufficient conditions. In the present pa...

متن کامل

Representations and characterizations of weighted lattice polynomial functions

Let L be a bounded distributive lattice. In this paper we focus on those functions f : L → L which can be expressed in the language of bounded lattices using variables and constants, the so-called “weighted” lattice polynomial functions. Clearly, such functions must be nondecreasing in each variable, but the converse does not hold in general. Thus it is natural to ask which nondecreasing functi...

متن کامل

Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices

We give several characterizations of discrete Sugeno integrals over bounded distributive lattices, as particular cases of lattice polynomial functions, that is functions which can be represented in the language of bounded lattices using variables and constants. We also consider the subclass of term functions as well as the classes of symmetric polynomial functions and weighted minimum and maxim...

متن کامل

EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations

GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...

متن کامل

Polynomial Functions Over Bounded Distributive Lattices

Let L be a bounded distributive lattice. We give several characterizations of those Ln → L mappings that are polynomial functions, i.e., functions which can be obtained from projections and constant functions using binary joins and meets. Moreover, we discuss the disjunctive normal form representations of these polynomial functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Multiple-Valued Logic and Soft Computing

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2010